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APPROXIMATE SOLUTIONS TO OPTIMUM FLIGHT TRAJECTORIES 

FOR A TURBOJET-POWERED AIRCRAFT 

By Angelo Miele and James 0. Cappellari, Jr. 

SUMMARY 

The climbing program of a turbojet-powered a i r c r a f t  is  analyzed with 
respect t o  minimum time, minimum fuel consumption, and minimum horizontal  
distance t r a j e c t o r i e s .  By means of the ind i r ec t  methods of the calculus 
of var ia t ions it i s  shown that, i n  the case where the cent r ipe ta l  accel- 
e ra t ion  e f f e c t s  a r e  neglected, the t o t a l i t y  of extrema1 a rc s  consists of 
a number of constant path incl inat ion subarcs and a number of variable 
path incl inat ion subarcs. 

Under sui table  hypotheses f o r  the drag function and t h r u s t  function, 
solutions i n  a closed form are obtained f o r  the variable path inc l ina t ion  

respect t o  the r e s u l t s  supplied by the so-called energy-height method, 
commonly used by a i r c r a f t  manufacturers. The la t ter  is  a graphical- 
ana ly t ica l  procedure, according t o  which the speed f o r  best climb i s  
determined as the velocity maximizing the  power excess (available power 
minus required power) f o r  constant value of the energy height 

. subarc. These solutions represent a considerable improvement with 

h , = h + -  . With the energy-height method several  nonoptimum points ( v2 2g ) 
m u s t  be analyzed, f o r  each value of 
the finding of the optimum operating condition. 
t ions,  on the contrary, the optimum operating point  is  supplied by 
straightforward computational procedure. 

he, as a preliminary s t ep  toward 
With the present solu- 

For par t icu lar  types of drag polars, t he  variable path inc l ina t ion  
subarc may consis t  of several  branches, one of which i s  subsonic, one 
transonic,  and one supersonic. With regard t o  minimum t i m e  and minimum 
f u e l  consumption t r a j ec to r i e s ,  only the subsonic and the supersonic 
branches are of i n t e r e s t .  

Numerical examples are presented f o r  the minimum t i m e  problem, and 
the e f f e c t  of wing loading on the solutions i s  investigated.  
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INTRODUCTION 

I n  reference 1, which presents extensive bibliographical informa- 
t ion,  t ra jec tor ies  of minimum time were investigated with approximate 
methods f o r  a rocket-powered a i r c r a f t .  

In  the present analysis a more general category of problems is  con- 
sidered, namely problems involving e i t h e r  time or f u e l  consumed o r  
horizontal distance flown by the  a i r c r a f t .  Paths extremizing any one 
of the above three quant i t ies ,  f o r  the case where each of the other two W 
is  e i ther  f r e e  of choice or  prescribed, a r e  investigated.  1 

1 
7 A turbojet-powered a i r c r a f t  i s  considered i n  connection with 

f l i g h t  t ra jec tor ies  of r e l a t ive ly  short  duration. A s  a consequence, the 
weight of the airplane i s  regarded as a constant i n  the equations of 
motion. 

This investigation w a s  conducted a t  Purdue University under the 
sponsorship and with the f inanc ia l  ass is tance of the National Advisory 
Committee f o r  Aeronautics. The authors a re  indebted t o  Professor B. A. 
Reese for supplying information on the behavior of air-breathing engines 
a t  high Mach number, and t o  Messrs. W .  A. Fleming and E. C.  Wilcox of the 
NASA Lewis Research Center. 

SYMBOLS 

a 

C 

CD 

CL 

D 

Di 

E 

f 

F 

speed of sound, f t  sec’l 

specif ic  fuel consumption, sec-1 

drag coeff ic ient  

l i f t  coeff ic ient  

drag, l b  

induced drag, l b  

excess function defined by equation ( 8 ) ,  lb 

. .- function defined by equation (19) 

fundamental function defined by equation (20) 
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g 

h f l i g h t  a l t i t ude ,  f t  

accelerat ion of gravity,  f t  sec-2 

he energy height, h + 772 - f t  a’ 
I funct ional  form defined by equation (17) 

K r a t i o  of induced drag coefficient t o  square of l i f t  
coef f ic ien t  

K 1 .  . .K3 numerical constants 

L l i f t ,  l b  

m quantity defined by equation ( 4 0 )  

M Mach number 

. 
P 

9 

atmospheric pressure, l b  f t’* 

weight of f u e l  consumed per  u n i t  time, l b  sec- l  

Q weight of f u e l  consumed, lb 

R 

s reference surface,  f t  

a i r  constant, f t 2  sec-2 OR-’ 

2 

t time, sec 

T t h rus t ,  l b  

V f l i g h t  velocity,  f t  see’’ 

W weight of a i r c r a f t ,  l b  

X exponent appearing i n  thrust  re la t ionship  defined by 
equation (45) 

X horizontal  dlstance flown, f t  

Y exponent appearing i n  specif ic  f u e l  consumption re la t ionship  
defined by equation (46) 

b 

* 
-& derivat ive of a i r  temperature with respect t o  a l t i t ude ,  OR ft-I 5 
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Y r a t i o  of spec i f ic  heat a t  constant pressure t o  spec i f ic  heat  

path inc l ina t ion  with respect t o  horizontal  plane (posi t ive 

constant defined by equation (44) 

- a t  constant volume 

0 
f o r  climbing) 

A 

CI variable Lagrange mul t ip l ie r  

n: r a t i o  of pressure a t  a l t i t u d e  h t o  pressure a t  the 
tropopause h* 

Q r e l a t ive  density of a i r  

P absolute density of air, l b  f t  sec 

7 

Q 

4f 
0) 

-4 2 

absolute temperature of a i r ,  OR 

function defined by equation ( 6 ) ,  f t -2  sec3 

function defined by equation ( 7 ) ,  f t -2  sec2 

function defined by f irst  member of equation (58) 

k 

i 

Superscript : 

( ) '  derivative w i t h  respect t o  velocity 

Subscript s : 

i 

f 

0 

00 

* 

I 

i n i t i a l  point 

f i n a l  point 

zero- l i f t  condition, condition a t  M = 0, or  sea-level 
condition 

zero- l i f t  condition evaluated a t  M = 0 

condition a t  the tropopause 

FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION 

The following hypotheses a re  used throughout the paper: 

(1) The turbojet-powered a i r c r a f t  i s  regarded as a pa r t i c l e .  



/ 
/' 

(2) - The small angle 
vector V i s  neglected. 

( 3 )  Aerodynamic 143 
forces a re  calculated as 

_. 

between the thrus t  vector T and the veloci ty  

i s  disregarded, that is, l i f t  L and drag D 
i n  unaccelerated f l i g h t .  

(4) Weight W is regarded as a constant. 

( 5 )  The centr i fugal  component of acceleration i s  not considered and 
the equation of motion on the normal to the f l i g h t  path i s  approximated 
( r e f .  1) as  

/ 

L - w = o  (1) 

(6) Only f l i g h t  paths contained i n  a v e r t i c a l  plane a re  considered. 

(7) The propulsion system is operated i n  such a way t h a t  thrust T, 
spec i f ic  f u e l  consumption c, and fuel consumed per uni t  time q are  
known functions of velocity V and a l t i t u d e  h 

T = T(V,h) (2) 

c = c(V,h) ( 3 )  

In  the l i g h t  of the above hypotheses, the equation of motion on the 
tangent t o  the f l i g h t  path i s  writ ten ( a f t e r  simple transformations) as 

- @ - J r h ' = O  h '  
V s i n  0 

W $ = -  
EV 

( 5 )  

E = T - D  
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the E function is denominated the excess function. 

With regard t o  the drag function, hypothesis ( 3 )  leads t o  a general 
expression of the form 

W 
1 
1 

D = Do(h,V) + Di(h,V,L) (10) 

where Do i s  the zero l i f t  drag. After  accounting f o r  equation (1) and 7 
hypothesis (4), one concludes that the 
form 

D function can be wri t ten  i n  the 

Because of equation (2) the E function has also the  form E = E(V,h). 
As a consequence, both the 4 function and the Jr function can be 
regarded as obeying relat ionships  of the type 

F'OFWULATION OF LAGRANGE PROBLEM 

The time t necessary t o  t ransfer  the turbojet-powered a i r c r a f t  
i from an i n i t i a l  condition of f l i g h t  

f i s  given by 
t o  a final condition of f l i g h t  

?Vf 
h'  dV = jvi (4  + Jrh')dV (14) 

' v f 
= i, V s i n  0 

The fue l  consumed Q i s  supplied by 



W 
1 
1 
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Qv s i n  h '  e dV =c q(@ + Jrh')dV 

In  turn,  the distance flown horizontally X i s  approximated as 

This, evidently, o n v  holds f o r  t r a j ec to r i e s  which are ( i n  the  average) 
not too s teep.  

A l i n e a r  combination of the in tegra ls  (14), (l?), and (16) i s  now 
considered 

where K 1 ,  K2, and K3 are appropriate constants, and the functional 
form indicated below is  obtained 

I =  rvf f ( 0  + Jrh')dV 

where 

The following Lagrange problem i s  formulated: Among the t r a n s f i n i t e  
set  of functions h(V) and 0 ( V )  which are solut ions of the  d i f fe ren-  
t i a l  equation ( 5 ) ,  t o  determine the spec ia l  s e t ,  such t h a t  the func t iona l  
form (18) i s  extremized. The end conditions prescribe (for instance)  the 
i n i t i a l  and f inal  values f o r  velocity and a l t i t u d e .  
0 ,  on the contrary, cannot be prescribed; i n  view of the  ana ly t i ca l  nature 
of the problem, they are a consequence of the  set of E u l e r  equations.  

The end values f o r  
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Clearly, the above problem i s  a ra ther  general one. Among i t s  
byproducts the following p a r t i c u l a r  cases can, f o r  instance, be listed: 

(1) Stationary t i m e ,  free f u e l  consumption, free horizontal  distance 
( K 1  1, K2 = K3 = 0) 

(2) Stationary f u e l  consumption, free t i m e ,  free horizontal  distance 
(K1 = K3 = 0, K2 = 1) 

(3) Stationary distance, free t i m e ,  f r e e  f u e l  consumption 
(K1 = K 2  = 0, K3 = 1) 

(4)  Stationary time, free f u e l  consumption, given horizontal  ais- 
tance (K1 = 1, K2 = 0, K3 f 0) 

( 5 )  Stationary f u e l  consumption, f r e e  time, given horizontal  d i s -  
tance (K1 = 0, K 2  = 1, K3 # 0) 

(6) Stationary time, given f u e l  consumption, given horizontal  dis-  
tance (K1 = 1, K 2  f 0, K3 # 0) 

'Euler Equations 

A variable Lagrange mult ipl ier  p(V) i s  now introduced and the 
following expression, denominated fundamental function, formed 

F = f ( Q  + Qh') + p - - Qh') 

Since there are two unknown functions, the extrema1 properties of the 
desired optimm t ra jec tory  are described i n  terms of two E u l e r  equations, 
which can be wr i t ten  as follows 

leading t o  

W 
1 
1 
7 



ph' cos 6 

v sin20 
= o  

9 

( 2 3 )  

(24) - + $h ' )  t (p - f)(a + & h j  = 0 " I  ah ah 

The E u l e r  equation (23) i s  par t icu lar ly  in te res t ing  because it shows 
t h a t  the solut ion a r c  of the present var ia t ional  problem i s  discontinuous, 
being composed of subarcs 

COS e = o 

and subarcs 

p = o  

Equation ( 2 5 )  represents e i t h e r  a vert-zal  zoom o r  a v e r t i c a l  dive, 
while equation (26) i s  representative of a f l i g h t  condition with a con- 
tinuously variable path incl inat ion.  
f o r  p = 0, equation (24) yields 

In  t h i s  connection, notice t h a t  

I n  consideration of the f a c t  that 

the following fundamental result is  obtained 

The l a t t e r  can a l s o  be, more expl ic i t ly ,  rewri t ten as 
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- E V ( K q  as + K3) + K- v2 ah aq + (K1 + K 2 q  + K3V) (E + V$ - $ g) = 0 (9) 

Par ti cular Problems 

The above equation has the merit of being general; it holds f o r  a l l  
problems where an extremum condition (combined o r  not with an isoperi-  
metric condition) i s  imposed on the time or  the fuel consumed or  the 
horizontal distance flown by the a i r c r a f t .  Under par t icu lar  circum- 
stances, equation ( 3 0 )  simplif ies  as follows : 

(1) Stationary t i m e ,  f r ee  f u e l  consumption, f r e e  horizontal  distance 
( K 1  = 1, K 2  = K 3  = 0) 

( 2 )  Stationary f u e l  consumption, f r ee  t i m e ,  free horizontal  distance 
( K 1  = 0, K 2  = 1, K 3  = 0) 

(3) Stationary distance, f r ee  time, f r ee  f u e l  consumption 
( K l  = K 2  = 0, K 3  = l) 

(4) Stationary time, f r ee  fue l  consumption, given horizontal  d i s  - 
tance (K1 = 1, K2 = 0, K3 f 0) 

(34) 

( 5 )  Stationary fue l  consumption, f r ee  time, given horizontal  d i s -  
K3 f 0) tance (K1 = 0, K2 = 1, c 
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1 
1 
7 

Notice t h a t  f o r  problems (4.) and ( 5 ) ,  t h a t  i s ,  f o r  problems of the 
isoperimetric type, the t e r m  K3 
mult ipl ier .  The par t icu lar  value of K3 associated with a given 
problem must be calculated on the basis of the established isoperimetric 
condition and of the prescribed boundary conditions. 

has the meaning of a constant Lagrange 

ANALYTICAL SOLUTIONS FOR VARIABLE PATH INCLINATION SUBARC 

Under par t icu lar  hypotheses concerning t h r u s t  and drag, ana ly t ica l  
solutions can be obtained fo r  the variable path incl inat ion subarc. 

Atmospheric Properties 

The atmosphere i n  which the aircraft is  f ly ing  i s  represented by 
means of the following relationships:  

where 
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I n  the above equations p i s  the absolute pressure, R = p/p-r the a i r  
constant, and a the der ivat ive of the temperature with respect t o  
a l t i t u d e  (-0.003566 OR ft-l f o r  troposphere; 0 ?R f t -1  f o r  isothermal 
stratosphere ) . 

Drag Function 

A parabolic approximation i s  now assumed f o r  the t o t a l  drag coef- 
f i c i en t  

cD = c D o ( ~ )  + K ( M ) c ~ ~  (42) 

The coefficients C D ~  and K are assumed t o  depend only on the Mach 
number M. After accounting f o r  equations (1) and (10) the drag function 
be comes 

+ * M2 ") (43) 

where 

Thrust and Specific Fuel Consumption 

With the object of deriving simple solutions f o r  the minimal 
problem, the t h r u s t  i s  assumed t o  be the product of a function Tl(M) 
of the Mach number only t i m e s  a function of the r e l a t i v e  density 
only. The T1 function i s  regarded as ident ica l  with the t h r u s t  T, 
a t  the tropopause. The T2 function i s  considered a power of the rela- 
t i v e  density CJ 

T ~ ( u )  

T = Tl(M)T2(:) = Tx(M)(;)x = T,(M)fl* (45) 

. -. 
where x i s  a constant with t y p i c a l  values of x = 0.75 f o r  tropospheric 
f l i g h t  and x = 1 f o r  s t ra tospheric  f l i g h t .  The values of the m con- 
s t a n t  are m 2 0.81 i n  the troposphere and m = 1 i n  the isothermal 
stratosphere . 



With regard t o  the spec i f i c  fuel consumption, the following function 
i s  assumed: 

where y i s  a constant with typical values of y = 0.15 f o r  tropo- 
spheric f l i g h t  and y = 0 f o r  stratospheric f l i g h t .  

Transformation of Coordinates 

The fundamental equation (30) is  now transformed from the ( h , V )  
coordinate system in to  the (rr,M) system, where 
pressure a id  
der ivat ives  appearing i n  equation (3O), use i s  made of the following 
operators: 

i s  the r e l a t i v e  
M = V/a, the  Mach number. With regard t o  the p a r t i a l  

a ( .  . .) - 1 a( .  . .> - -  
aV a a M  

(47 1 

(48) 

I n  view of these operators, equation (30) i s  rewri t ten as follows: 

-K3EV - K@ + $d2) + + 
2 

where 



Stationary T i m e ,  Free Fuel Consumption, Free Horizontal Distance 

For K1 = 1, K 2  = K 3  = 0, equation (49) reduces t o  

yielding (In view of the  f a c t  
cated as w(M,h) = 0. )  

n = n ( h ) ,  eq. ( 5 8 )  i s  symbolically ind i -  

where : 



, -  ‘F-65 the pa r t i cu la r  case of stratospheric f l i g h t  m = x = 1, equation (58)  
can be solved i n  terms of the relat ive pressure, yielding 

C 
B - A  

where 

d log K 
d log M 1 

The a l t i t u d e  associated with the f l i g h t  Mach nmber 
sphere i s  given by 

M i n  the s t ra to-  

(66) RT B - A  h = h, - - log I = h, + 
Q C 

Stationary Fuel Consumption, Free Time, 

Free Horizontal Distance 

For K 1  = K3 = 0, K2 = 1, equation (49) yields  

an equation which can a l so  be rewritten as equation (58), provided one 
defines 

2 

. a *  
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A = T I E - f 1 2  W 

r 

L 

1 + @42(1+ x 

1 d log c* 
d log M 

- (1 + 'M2) 

1 
7 

Concerning stratospheric flight x = m = 1, y = 0 the relative pressure- 
Mach number relationship is represented by equation (62) while the 
altitude-Mach number relationship is supplied by equation (66), where 

) 

d log M 

Stationary Horizontal Distance, Free Time, 

Free Fuel Consumption 

For K1 = K2 = 0, K3 = 1, equation (49) yields 

(73)  

By simple transformations, the above equation can be again rewritten 
as equation ( 5 8 ) ,  provided 
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With regard t o  s t ra tospheric  f l i g h t ,  equations (62) and (66) hold, 
where 

d log T* 

d log M 1 (78) 

(79) 

Comments on Solutions 

( A )  Consider f o r  the sake of discussion, the minimum t i m e  problem 
(free f u e l  consumption, f r e e  horizontal distance) and transform equa- 
t i o n  (31) from the (h,V) plane in to  the (he,V) plane where 
variable defined as  

h, is  a new 

and termed energy height. 

\ i 
CI 

2 
h , = h t L  

2g 

The associated result i s  t h a t  

= o  
he=Constant 



The above equation const i tutes  the ana ly t ica l  basis  f o r  the energy- 
height method (see ref. 2) ,  i n  which the speed f o r  best  climb i s  deter-  
mined as the veloci ty  maximizing the power excess EV (available power 
minus required power) f o r  constant value of the energy height b. 

With the graphical-analytical  procedure associated with the energy 
method several  nonoptimum points (sometimes 10 t o  15) must be computed, 
f o r  each value of &, as a preliminary s t ep  toward f inding the  optimum 
operating condition. 

With the ana ly t ica l  solutions of the  present repor t  the optimum 
operating technique i s  supplied by a straightforward computational pro- 
cedure. The advantages of the above procedure should be especial ly  
evident i n  the case where systematic design analyses a re  i n  order, such 
as those required t o  study the e f f ec t  of var ia t ions of wing loading o r  
t h rus t  loading on the optimum f l i g h t  program. 

(E) With equation (45) the t h r u s t  function i s  wr i t ten  as  the product 
of a function T1(M) of the Mach number only t i m e s  a function T2(a) of 
the relat ive density only. Consider, f o r  the sake of discussion, a 
constant-geometry turboje t  engine operating subsonically a t  constant RPM 
of the turbine-compressor group. For the above system, the re la t ionship  
(45) i s  rigorously t rue  i n  the isothermal stratosphere.  The same rela- 
tionship, however, is  only an approximation i n  the troposphere. Thus, 
if a more exact solution i s  desired f o r  the optimum tropospheric f l i g h t  
program, some refinement i n  the ana ly t ica l  representation of the th rus t  
is  necessary. 

A convenient method of achieving th i s  end consists of dividing the 
altitude-Mach number plane in to  a su i tab le  number of regions, and u t i -  
l i z i n g  a re la t ionship of the form of equation (45) i n  each of these 
regions. In  general, the functions T1(M) and T2(a) have a d i f f e ren t  
form f r o m  region t o  region. 
dently depends on the degree of accuracy which i s  desired. 

The t o t a l  number of regions required evi-  

It must be s t ressed t h a t  t h i s  procedure unavoidably leads t o  fur ther  
discontinuities i n  the Mach number and/or the a l t i t u d e  on the l i n e  of 
separation between one region and another. As a consequence, appropri- 
a t e  fairings must be introduced a pos te r ior i  i n  order t o  jo in  the d i f f e r -  
en t  branches of the optimuh f l i g h t  program.' 

lThe authors f e e l  tha t ,  with regard t o  the application of the present 
theory, two possible types of problems m u s t  be considered, namely: (1) 
design of a n  a i r c r a f t  and (2) planning of flight operations f o r  an air- 
c r a f t  which has already been designed. The more precise procedure out- 
l ined  i n  (B) is, i n  general, not necessary f o r  problems of type (1) but . 
may appear desirable f o r  some problems of type (2) .  

W 
1 
1 
7 
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I n  t h i s  sect ion numerical analyses are presented f o r  t yp ica l  
turbojet-powered a i r c r a f t .  The e f f ec t s  of variations i n  wing loading 
on the solutions are studied. The examples described are confined t o  
the problem of s ta t ionary t i m e ,  w i t h  the  f u e l  consumption and horizontal  
distance traveled remaining free; however, each of the remaining prob- 
l e m s  l i s t e d  i n  the sect ion e n t i t l e d  "Formulation of Lagrange Problem" 
may be t rea ted  i n  an analogous manner. 

Aerodynamic Characterist ics 

Two hypothetical a i r c r a f t  are considered as a bas is  f o r  the f o l -  

For both of them the drag polar i s  supposed t o  
lowing analyses. They a re  designated as configuration A and configura- 
t i o n  B, respectively.  
obey equation (42) and the t h r u s t  equation (45), with i n  the 
troposphere and x = 1 i n  the stratosphere. 

x = 0.75 

I n  r e l a t i o n  t o  configuration A, the r a t i o  CDo/CDoo i s  p lo t ted  
as a function of the Mach number i n  f igure l ( a ) ,  where 
zero- l i f t  drag coeff ic ient  evaluated a t  M = 0. The analogous curve 
f o r  configuration B is  presented i n  f igure l ( b ) .  
between configurations A and B l i e s  i n  the f a c t  that the drag rise i n  
the transonic region i s  much steeper f o r  configuration B. 

CDoo denotes 

The primary difference 

For both configurations, the r a t i o  K KO as a function of the 
Mach number i s  given i n  f igure 2, where 
evaluated a t  M = 0. The r a t i o  as a function of the Mach number 

i s  given i n  f igure 3 .  

I 
KO denotes induced drag f a c t o r  

Computations f o r  Configuration A 

The hypothetical a i r c r a f t  designated as configuration A i s  consid- 
ered i n  t h i s  section. 
charac te r i s t ics  are such that C k o  = 0.029 and KO = 0.2. The s t a t i c  
t h rus t  a t  the tropopause i s  supposed t o  be such that 

implying that the r a t i o  of sea-level s t a t i c  t h r u s t  t o  weight i s  
Too/W = 1. 

It i s  assumed t h a t  the low-speed aerodynamic 

T*olW = 0.4117 



.. . .' Variable path inc l ina t ion  subarc.- The subarc of the extrema1 s o h -  
t i o n  resul t ing from the  solut ion of equation ( 5 8 )  i s  now considered. 

F i r s t  of a l l ,  the functions A(M), B(M), and C ( M ) ,  defined by 
equations (59) t o  (61), are determined f o r  both tropospheric and s t r a t o -  
spheric f l i g h t  conditions. 
6.  

These functions are p lo t ted  i n  f igures  4 t o  

Secondly, as a computational a id ,  the re la t ionship  (eq. ( 5 8 ) )  
between A/B, C/B, and R i n  the troposphere i s  calculated and p lo t ted  
i n  figure 7. It leads t o  a family of s t r a i g h t  l i nes ,  one f o r  each value 
of the pressure r a t i o  R .  

Notice tha t ,  f o r  a given Mach number M, the sequence of graphical 
operations involved i n  solving equation (58) with the a id  of f igu re  7 
permits one t o  obtain only an approximate value f o r  the pressure r a t i o  
f l a .  Nevertheless, the inherent e r r o r  can be corrected by w r i t i n g  the  
exact solution of equation (58) i n  the form 

The correction term 6 << 1 
i n t o  equation ( 5 8 )  and l inear iz ing the la t te r  i n t o  

can be computed by introducing equation ( 8 3 )  

(84)  A,(,l+= E + 6(1 + mx)] - 2 (1 + 26) + c 2. 0 

A s  a consequence, the correction 6 i s  

AJtal+= - &,2 + c 6 2  
2&,* - A ( l  + mx)~~'+~ 

(85 

For the par t icu lar  case of wing loadings W/S of 60, 70, and 
80 lb f t -2 ,  the solutions of equation (58) are p lo t ted  i n  f igure 8 i n  
the altitude-Mach number plane. A s  the graphs indicate,  an increase i n  
wing loading s h i f t s  the optimum speed d is t r ibu t ion  u) = 0 toward the  
region of higher ve loc i t i e s .  Furthermore, a l l  the curves u) = 0 inclui 
a branch 
increases as the wing loading increases. I n  the figure,  the so l id  
l i n e  AB denotes the portion of the o) = 0 curve which i s  of i n t e r e s t  
f o r  f l i g h t  operations, insofar as it l ies  i n  the region of the 

h = Constant a t  t he  tropopause, t he  amplitude of which 
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altitude-Mach number plane where T - D > 0. The l ines  DBE consis t ing 
of long dashes represent the  geometrical locus of the points  along 
which the t h r u s t  T equals t he  drag D. Final ly ,  t he  l i n e s  CB con- 
s i s t i n g  of sho r t  dashes indicate the port ion of the u) = 0 curve which 
is of no i n t e r e s t  f o r  f l i g h t  operations, insofar  as it l i e s  i n  the  
region of the  altitude-Mach number plane where T - D < 0. 

Parenthet ical ly ,  it i s  t o  be stated that while the s o l i d  l i n e  AB 
must be flown i n  the sense of increasing speeds, the  short  dotted l i ne  
C 3  can be flown only i n  the  opposite sense. Thus, while AB i s  a solu- 
t i o n  of minimum t i m e ,  the curve CB is a so lu t ion  of maximum time. 

Typical extremal t ra jec torx .  - A typ ica l2  complete extremal t r a j ec -  
to ry  i s  shown i n  the altitude-Mach number plane i n  f igure  9, where I 
denotes the i n i t i a l  f l i g h t  condition, and F the  f inal  f l ight condition. 
The subarcs I G  and LF are t o  be flown i n  a v e r t i c a l  dive, i n  accordance 
with equation ( 2 5 ) .  The subarc GHKL i s  flown along the  u) = 0 curve. 

Notice t h a t  the pa r t i cu la r  extremal path sketched i n  f igure 9 
embodies several  corner points ,  that is, several  points  where the func- 
t i o n  h(M) shows an angular discontinuity.  The latter, i n  turn,  is  
the o r ig in  of a jump i n  the function Clearly, the above dis-  
cont inui t ies  are not physically achievable i n  f l i g h t ;  they appear only 
as the  consequence of the par t icu lar  hypotheses (namely, the neglect of 
cent r ipe ta l  accelerat ions)  under which the  present problem has been 
t rea ted .  Therefore, i n  p r a c t i c a l  applications,  the joining together of 
the separate subarcs i s  t o  be accomplished by means of appropriate 
fairings, qua l i t a t ive ly  indicated by the dashed l i n e s  i n  the  f igure .  
The f a i r i n g  i n  question must be consistent with the  s t r u c t u r a l  capacity 
of the a i r c r a f t ,  with the physiological a b i l i t y  of the p i l o t  t o  with- 
stand accelerat ion and, furthermore, with the  thrust-drag cha rac t e r i s t i c s  
of the a i r c r a f t .  

8 (M) . 

Computations f o r  Configuration B 

The hypothetical  a i r c r a f t  designated as configuration B ( f i g .  l ( b ) )  
i s  now considered. This configuration i s  characterized by the following 
parameters: C D ~ ~  = 0.023, KO = 0.2, and T, W = 0.411 (Too/W = 1). 01 

Variable path inc l ina t ion  subarc. - The functions A(M) and C ( M )  
f o r  configuration B are iden t i ca l  with those f o r  configuration A and are 
given by f igures  4 and 6. The function B(M) fo r  configuration B i s  
presented i n  f igu re  10 f o r  the troposphere and s t ra tosphere.  

2 A l l  possible combinations of subarcs which may arise from the  
so lu t ion  of the  boundary-value problem have been indicated i n  f igure  1 
of reference 1. 

- %  
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The solutions of equation (58) i n  the altitude-Mach number plane 
fo r  wing loadings of 60, 70 , and 80 l b  f t - 2  a re  p lo t ted  i n  f igure  11. 

A comparison between f igures  8 and 11 innnediately yields  the 
pr incipal  difference between configurations A and B: configuration A 
( m i l d  d rag  gradient i n  the transonic region) yields  a single-valued 
relationship i n  the altitude-Mach number plane, while configuration B 
(strong drag gradient i n  the transonic region) yields  a multiple-valued 
relationship i n  cer ta in  regions of the altitude-Mach number plane. 

This implies, therefore,  that associated with configuration B there  
a re  three branches of the solution: 
supersonic branch. It can be shown t h a t  the portion of the transonic 
branch embedded i n  the region of the altitude-Mach number plane where 
T - D > 0 

a subsonic, a transonic, and a 

is associated with a maximum t i m e  t ra jec tory .  

The following symbology has been used i n  f igure 11. The so l id  
l ines  AB and EG denote the portions of the (u = 0 
i n t e r e s t  for  f l i g h t  operations. 
Mach number plane where T - D > 0 and, furthermore, they minimize the 
climbing t i m e ,  as can be shown by Green's theorem ( r e f .  3). 

curve which a re  of 
They l i e  i n  the region of the a l t i t ude -  

The l ine  HBDGK consisting of long dashes represents the geometrical 
locus of the points along which T - D = 0 

The lines BC, CD, and GL (short  dashes) are embedded i n  the region 
of the altitude-Mach number plane where T - D < 0 and have, therefore,  
l i t t l e  in te res t  fo r  f l i g h t  operations. They can only be flown i n  the 
sense of decreasing a l t i t udes .  Furthermore, the two l ines  CB and LG are 
associated with maximum t i m e  t r a j ec to r i e s  a s  Green's theorem (ref. 3) 
shows. 

Remark.- The exact solution of possible types of boundary-value 
problems ar is ing with configurations of type B may be the or igin,  i n  
pract ice ,  of important ana ly t ica l  d i f f i c u l t i e s ,  of the same kind 
encountered by the senior wr i te r  i n  reference 4. 

The d i f f i cu l t i e s  i n  question a re  e s sen t i a l ly  concerned with the 
determination o f  the sequence of subarcs o) = 0 and cos 0 = 0 which 
form an extrema1 arc .  

CONCLUSIONS 

The climbing technique f o r  a turbojet-powered a i r c r a f t  i s  analyzed 
from the standpoint of extremizing the time required, the f u e l  consumed, 

W 
1 
1 
7 
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or  the horizontal  distance flown by the  a i r c r a f t  i n  f ly ing  from one 
speed-altitude combination t o  another. 

j .  Trajector ies  minimizing any one of the above three quant i t ies  are 
investigated f o r  the case where each of the other two i s  e i t h e r  free of 
choice o r  prescribed. 
consis ts  of a number of constant path inc l ina t ion  subarcs and a number 
of variable path inc l ina t ion  subarcs. 

It is shown that  the t o t a l i t y  of extrema1 a rc s  

With regard t o  the latter, solutions i n  a closed form are developed, 
thus bypassing the graphical-analytical procedure known as energy-height 
method. 
e i the r  a single-valued type or  a multiple-valued type, depending upon 
the type of drag polar u t i l i zed .  In  the latter case, three branches of 
the solut ion generally ex i s t :  a subsonic branch; a transonic branch, 
being of no in t e re s t ;  and a supersonic branch. 

It i s  shown that the altitude-Mach number relat ionship can be 

Purdue University, 
Lafayette, Ind., Ju ly  8, 1958. 
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(a) Configurat ion A. 
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Figure 2.- Ratio of induced drag coeff ic ient  t o  square of l i f t  coeffi-  
c i en t  as a function of Mach number (configurations A and B) . 

Figure 3 . -  T h r u s t  a t  tropopause as a function of Mach number 
(configurations A and B) . 
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(a) Tropospheric flight. 
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(b) Stratospheric flight. 
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Figure 4.- The function A(M) for configurations A and B. 
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(a)  Tropospheric f l i g h t .  

(b)  Stratospheric f l i g h t .  

Figure 5.-  The function B(M) f o r  configuration A .  
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(c)  W/S = 80 lb-ft'*. 

Figure 8.- Altitude-Mach number relat ionship a t  points of variable path 
inc l ina t ion  subarc (configuration A; minimum t i m e ) .  
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(a) Tropospheric flight. 
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(b) Stratospheric flight. 
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Figure 10.- The function B(M) for configuration B. 
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(a) W/S = 60 lb-ft'*. 
- 

(b)  W/S = 70 lb-ft-2.. 

M 

( c )  W/S = 80 lb-ft-*. 

Figure 11.- Altitude-Mach number relationship a t  points of variable path 
incl inat ion subarc (configuration B; m i n i m u m  t i m e )  . 
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